Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
3.
Proc Natl Acad Sci U S A ; 120(3): e2211132120, 2023 01 17.
Article in English | MEDLINE | ID: covidwho-2186696

ABSTRACT

SARS-CoV-2 vaccines are effective at limiting disease severity, but effectiveness is lower among patients with cancer or immunosuppression. Effectiveness wanes with time and varies by vaccine type. Moreover, previously prescribed vaccines were based on the ancestral SARS-CoV-2 spike-protein that emerging variants may evade. Here, we describe a mechanistic mathematical model for vaccination-induced immunity. We validate it with available clinical data and use it to simulate the effectiveness of vaccines against viral variants with lower antigenicity, increased virulence, or enhanced cell binding for various vaccine platforms. The analysis includes the omicron variant as well as hypothetical future variants with even greater immune evasion of vaccine-induced antibodies and addresses the potential benefits of the new bivalent vaccines. We further account for concurrent cancer or underlying immunosuppression. The model confirms enhanced immunogenicity following booster vaccination in immunosuppressed patients but predicts ongoing booster requirements for these individuals to maintain protection. We further studied the impact of variants on immunosuppressed individuals as a function of the interval between multiple booster doses. Our model suggests possible strategies for future vaccinations and suggests tailored strategies for high-risk groups.


Subject(s)
COVID-19 , Neoplasms , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Viral , Antibodies, Neutralizing
4.
Ther Adv Med Oncol ; 14: 17588359221119370, 2022.
Article in English | MEDLINE | ID: covidwho-2005577

ABSTRACT

Purpose: To explore the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in patients with breast cancer based on type of anticancer treatment. Methods: Patients with breast cancer had anti-spike antibody concentrations measured ⩾14 days after receiving a full SARS-CoV-2 vaccination series. The primary endpoint was IgA/G/M anti-spike antibody concentration. Multiple regression analysis was used to analyze log10-transformed antibody titer concentrations. Results: Between 29 April and 20 July 2021, 233 patients with breast cancer were enrolled, of whom 212 were eligible for the current analysis. Patients who received mRNA-1273 (Moderna) had the highest antibody concentrations [geometric mean concentration (GMC) in log10: 3.0 U/mL], compared to patients who received BNT162b2 (Pfizer) (GMC: 2.6 U/mL) (multiple regression adjusted p = 0.013) and Ad26.COV2.S (Johnson & Johnson/Janssen) (GMC: 2.6 U/mL) (p = 0.071). Patients receiving cytotoxic therapy had a significantly lower antibody titer GMC (2.5 U/mL) compared to patients on no therapy or endocrine therapy alone (3.0 U/mL) (p = 0.005). Patients on targeted therapies (GMC: 2.7 U/mL) also had a numerically lower GMC compared to patients not receiving therapy/on endocrine therapy alone, although this result was not significant (p = 0.364). Among patients who received an additional dose of vaccine (n = 31), 28 demonstrated an increased antibody response that ranged from 0.2 to >4.4 U/ mL. Conclusion: Most patients with breast cancer generate detectable anti-spike antibodies following SARS-CoV-2 vaccination, though systemic treatments and vaccine type impact level of response. Further studies are needed to better understand the clinical implications of different antibody levels, the effectiveness of additional SARS-CoV-2 vaccine doses, and the risk of breakthrough infections among patients with breast cancer.

5.
J Clin Oncol ; 40(1): 12-23, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1724717

ABSTRACT

PURPOSE: The immunogenicity and reactogenicity of SARS-CoV-2 vaccines in patients with cancer are poorly understood. METHODS: We performed a prospective cohort study of adults with solid-organ or hematologic cancers to evaluate anti-SARS-CoV-2 immunoglobulin A/M/G spike antibodies, neutralization, and reactogenicity ≥ 7 days following two doses of mRNA-1273, BNT162b2, or one dose of Ad26.COV2.S. We analyzed responses by multivariate regression and included data from 1,638 healthy controls, previously reported, for comparison. RESULTS: Between April and July 2021, we enrolled 1,001 patients; 762 were eligible for analysis (656 had neutralization measured). mRNA-1273 was the most immunogenic (log10 geometric mean concentration [GMC] 2.9, log10 geometric mean neutralization titer [GMT] 2.3), followed by BNT162b2 (GMC 2.4; GMT 1.9) and Ad26.COV2.S (GMC 1.5; GMT 1.4; P < .001). The proportion of low neutralization (< 20% of convalescent titers) among Ad26.COV2.S recipients was 69.9%. Prior COVID-19 infection (in 7.1% of the cohort) was associated with higher responses (P < .001). Antibody titers and neutralization were quantitatively lower in patients with cancer than in comparable healthy controls, regardless of vaccine type (P < .001). Receipt of chemotherapy in the prior year or current steroids were associated with lower antibody levels and immune checkpoint blockade with higher neutralization. Systemic reactogenicity varied by vaccine and correlated with immune responses (P = .002 for concentration, P = .016 for neutralization). In 32 patients who received an additional vaccine dose, side effects were similar to prior doses, and 30 of 32 demonstrated increased antibody titers (GMC 1.05 before additional dose, 3.17 after dose). CONCLUSION: Immune responses to SARS-CoV-2 vaccines are modestly impaired in patients with cancer. These data suggest utility of antibody testing to identify patients for whom additional vaccine doses may be effective and appropriate, although larger prospective studies are needed.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Neoplasms/immunology , SARS-CoV-2/immunology , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies
6.
Cancer Cell ; 40(1): 103-108.e2, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1596342

ABSTRACT

Patients with cancer are more likely to have impaired immune responses to SARS-CoV-2 vaccines. We study the breadth of responses against SARS-CoV-2 variants after primary vaccination in 178 patients with a variety of tumor types and after booster doses in a subset. Neutralization of alpha, beta, gamma, and delta SARS-CoV-2 variants is impaired relative to wildtype, regardless of vaccine type. Regardless of viral variant, mRNA1273 is the most immunogenic, followed by BNT162b2, and then Ad26.COV2.S. Neutralization of more variants (breadth) is associated with a greater magnitude of wildtype neutralization, and increases with time since vaccination; advancing age associates with a lower breadth. The concentrations of anti-spike protein antibody are a good surrogate for breadth (positive predictive value of =90% at >1,000 U/mL). Booster SARS-CoV-2 vaccines confer enhanced breadth. These data suggest that achieving a high antibody titer is desirable to achieve broad neutralization; a single booster dose with the current vaccines increases the breadth of responses against variants.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Neoplasms/immunology , SARS-CoV-2/immunology , Aged , Aging/immunology , Antigens, Viral/immunology , Female , Humans , Immunization, Secondary , Immunocompromised Host , Immunogenicity, Vaccine , In Vitro Techniques , Male , Middle Aged , Neoplasms/therapy , Spike Glycoprotein, Coronavirus/immunology , Viral Load
7.
Radiother Oncol ; 166: 88-91, 2022 01.
Article in English | MEDLINE | ID: covidwho-1537007

ABSTRACT

The immunogenicity of SARS-CoV-2 vaccines in cancer patients receiving radiotherapy is unknown. This prospective cohort study demonstrates that anti-SARS-CoV-2 spike antibody and neutralization titers are reduced in a subset of thoracic radiotherapy patients, possibly due to immunosuppressive conditions. Antibody testing may be useful to identify candidates for additional vaccine doses.


Subject(s)
COVID-19 , Neoplasms , BNT162 Vaccine , COVID-19 Vaccines , Humans , Neoplasms/radiotherapy , Prospective Studies , SARS-CoV-2
8.
Oncologist ; 26(8): e1427-e1433, 2021 08.
Article in English | MEDLINE | ID: covidwho-1210191

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has significantly impacted health care systems. However, to date, the trend of hospitalizations in the oncology patient population has not been studied, and the frequency of nosocomial spread to patients with cancer is not well understood. The objectives of this study were to evaluate the impact of COVID-19 on inpatient oncology census and determine the nosocomial rate of COVID-19 in patients with cancer admitted at a large academic center. MATERIALS AND METHODS: Medical records of patients with cancer diagnosed with COVID-19 and admitted were reviewed to evaluate the temporal trends in inpatient oncology census during pre-COVID-19 (January 2019 to February 2020), COVID-19 (March to May 2020), and post-COVID-19 surge (June to August 2020) in the region. In addition, nosocomial infection rates of SARS-CoV-2 were reviewed. RESULTS: Overall, the daily inpatient census was steady in 2019 (median, 103; range, 92-118) and until February 2020 (median, 112; range, 102-114). However, there was a major decline from March to May 2020 (median, 68; range, 57-104), with 45.4% lower admissions during April 2020. As the COVID-19 surge eased, the daily inpatient census over time returned to the pre-COVID-19 baseline (median, 103; range, 99-111). One patient (1/231, 0.004%) tested positive for SARS-CoV-2 13 days after hospitalization, and it is unclear if it was nosocomial or community spread. CONCLUSION: In this study, inpatient oncology admissions decreased substantially during the COVID-19 surge but over time returned to the pre-COVID-19 baseline. With aggressive infection control measures, the rates of nosocomial transmission were exceedingly low and should provide reassurance to those seeking medical care, including inpatient admissions when medically necessary. IMPLICATIONS FOR PRACTICE: The COVID-19 pandemic has had a major impact on the health care system, and cancer patients are a vulnerable population. This study observes a significant decline in the daily inpatient oncology census from March to May 2020 compared with the same time frame in the previous year and examines the potential reasons for this decline. In addition, nosocomial rates of COVID-19 were investigated, and rates were found to be very low. These findings suggest that aggressive infection control measures can mitigate the nosocomial infection risk among cancer patients and the inpatient setting is a safe environment, providing reassurance.


Subject(s)
COVID-19 , Cross Infection , Neoplasms , Censuses , Cross Infection/epidemiology , Humans , Inpatients , Neoplasms/complications , Neoplasms/epidemiology , Pandemics , SARS-CoV-2
10.
Nat Rev Clin Oncol ; 18(5): 313-319, 2021 05.
Article in English | MEDLINE | ID: covidwho-1135668

ABSTRACT

Emerging efficacy data have led to the emergency use authorization or approval of COVID-19 vaccines in several countries worldwide. Most trials of COVID-19 vaccines excluded patients with active malignancies, and thus data on the safety, tolerability and efficacy of the vaccines in patients with cancer are currently limited. Given the risk posed by the COVID-19 pandemic, decisions regarding the use of vaccines against COVID-19 in patients participating in trials of investigational anticancer therapies need to be addressed promptly. Patients should not have to choose between enrolling on oncology clinical trials and receiving a COVID-19 vaccine. Clinical trial sponsors, investigators and treating physicians need operational guidance on COVID-19 vaccination for patients with cancer who are currently enrolled or might seek to enrol in clinical trials. Considering the high morbidity and mortality from COVID-19 in patients with cancer, the benefits of vaccination are likely to far outweigh the risks of vaccine-related adverse events. Herein, we provide operational COVID-19 vaccine guidance for patients participating in oncology clinical trials. In our perspective, continued quality oncological care requires that patients with cancer, including those involved in trials, be prioritized for COVID-19 vaccination, which should not affect trial eligibility.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Clinical Trials as Topic , Neoplasms , Vaccination/standards , Humans , Neoplasms/therapy , Patient Selection , SARS-CoV-2
11.
JTO Clin Res Rep ; 2(1): 100124, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-968750

ABSTRACT

INTRODUCTION: Lung cancer is associated with severe coronavirus disease 2019 (COVID-19) infections. Symptom overlap between COVID-19 and lung cancer may complicate diagnostic evaluation. We aimed to investigate the incidence, symptoms, differential diagnosis, and outcomes of COVID-19 in patients with lung cancer. METHODS: To determine an at-risk population for COVID-19, we retrospectively identified patients with lung cancer receiving longitudinal care within a single institution in the 12 months (April 1, 2019 to March 31, 2020) immediately preceding the COVID-19 pandemic, including an "active therapy population" treated within the last 60 days of this period. Among patients subsequently referred for COVID-19 testing, we compared symptoms, laboratory values, radiographic findings, and outcomes of positive versus negative patients. RESULTS: Between April 1, 2019 and March 31, 2020, a total of 696 patients received longitudinal care, including 406 (58%) in the active therapy population. Among 55 patients referred for COVID-19 testing, 24 (44%) were positive for COVID-19, representing a cumulative incidence of 3.4% (longitudinal population) and 1.5% (active therapy population). Compared with patients who were COVID-19 negative, those who were COVID-19 positive were more likely to have a supplemental oxygen requirement (11% versus 54%, p = 0.005) and to have typical COVID-19 pneumonia imaging findings (5 versus 56%, p = 0.001). Otherwise, there were no marked differences in presenting symptoms. Among patients who were COVID-19 negative, alternative etiologies included treatment-related toxicity (26%), atypical pneumonia (22%), and disease progression (22%). A total of 16 patients positive for COVID-19 (67%) required hospitalization, and seven (29%) died from COVID-related complications. CONCLUSIONS: COVID-19 was infrequent in this lung cancer population, but these patients experienced high rates of morbidity and mortality. Oncologists should maintain a low threshold for COVID-19 testing in patients with lung cancer presenting with acute symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL